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Abstract—The graphics processor unit (GPU) is able to provide
a low-cost and flexible software-based multi-core architecture for
high performance computing. However, it is still very challenging
to efficiently map the real-world applications to GPU and fully
utilize the computational power of GPU. As a case study, we
present a GPU-based implementation of a real-world digital
signal processing (DSP) application: low-density parity-check
(LDPC) decoder. The paper shows the efforts we made to map
the algorithm onto the massively parallel architecture of GPU
and fully utilize GPU’s computational resources to significantly
boost the performance. Moreover, several efficient data structures
have been proposed to reduce the memory access latency and the
memory bandwidth requirement. Experimental results show that
the proposed GPU-based LDPC decoding accelerator can take
advantage of the multi-core computational power provided by
GPU and achieve high throughput up to 100.3Mbps.
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I. INTRODUCTION

A graphics processing unit (GPU) provides a parallel ar-

chitecture which combines raw computation power with pro-

grammability. GPU provides extremely high computational

throughput by employing many cores working on a large

set of data in parallel. In the field of wireless communi-

cation, although power and strict latency requirements of

real communication systems continue to be the main chal-

lenges for a practical real-time GPU-based platform, GPU-

based accelerators remain attractive due to their flexibility and

scalability, especially in the realm of simulation acceleration

and software-defined radio (SDR) test-beds. Recently, GPU-

based implementations of several key components of com-

munication systems have been studied. For instance, a soft

information multiple-input multiple-output (MIMO) detector

is implemented on GPU and achieves very high throughput [1].

In [2], a parallel turbo decoding accelerator implemented on

GPU is studied for wireless channels.

Low-density parity-check (LDPC) decoder [3] is another

key communication component and the GPU implementations

of the LDPC decoder have drawn much attention recently,

due to its high computational complexity. LDPC codes are a

class of powerful error correcting codes that can achieve near-

capacity error correcting performance. This class of codes are

widely used in many wireless standards such as WiMax (IEEE

802.16e), WiFi (IEEE 802.11n) and high speed magnetic

storage devices. The flexibility and scalability make GPU a

good simulation platform to study the characteristics of dif-

ferent LDPC codes or to develop new LDPC codes. Recently,
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Fig. 1. Parity check matrix H for a block length of 1944 bits, code rate
1/2, IEEE 802.11n (1944, 972) LDPC code. H consists of Msub × Nsub

sub-matrices (Msub = 12, Nsub = 24 in this example).

parallel implementations of high throughput LDPC decoders

are studied in [4]. In [5], the researchers optimize the memory

access and develop parallel decoding software for cyclic and

quasi-cyclic LDPC (QC-LDPC) codes. However, there is still

great potential to achieve higher performance by developing

better algorithm mapping according to the GPU’s architecture.

In this work, a highly-optimized and massively parallel

LDPC decoder implementation on GPU is presented. This

paper is organized as follows. Section II gives an overview of

the LDPC decoding algorithm. Different aspects of the GPU

implementation of the LDPC decoder and memory access

optimization techniques are discussed in Section III. Sec-

tion IV provides the experimental results for performance and

throughput of the proposed implementation. Finally, Section V

concludes this paper.

II. INTRODUCTION TO LDPC DECODING ALGORITHM

A. QC-LDPC Codes

The binary LDPC codes can be defined by the equation

H · xT = 0, in which x is a codeword and H is an M × N
sparse parity check matrix. Quasi-Cyclic LDPC (QC-LDPC)

codes are a special class of LDPC codes with a structured H

matrix, which can be generated by the expansion of a Z × Z
base matrix. As an example, Fig. 1 shows the parity check

matrix for the (1944, 972) 802.11n LDPC code with sub-

matrix size Z = 81. In this matrix representation, each square

box with a label Ix represents an 81 × 81 circularly right-

shifted identity matrix with a shifted value of x, and each

empty box represents an 81× 81 zero matrix.

B. Sum-product Algorithm for LDPC Decoder

The sum-product algorithm (SPA) is based on iterative

message passing among check-nodes (CNs) and variable-
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nodes (VNs) [3]. The SPA has a computational complexity

of O(N3), in which N is normally very large. The SPA is

usually performed in the log-domain (log-SPA).

Let cn denote the n-th bit of a codeword, and let xn denote

the n-th bit of a decoded codeword. The a posteriori probabil-

ity (APP) log-likelihood ratio (LLR) is soft information for cn
and can be defined as Ln = log((Pr(cn = 0)/Pr(cn = 1)).
1) Initialization:

Ln is initialized to be the input channel LLR. The VN-to-

CN (VTC) message Qmn and the CN-to-VN (CTV) message

Rmn are initialized to 0.

2) Iterative Decoding:

For each VN n, calculate Qmn by

Qmn = Ln +
∑

m′∈{Mn\m}

Rm′n, (1)

where Mn \m denotes the set of all the CNs connected with

VN n except CN m. Then, for each CN m, compute the new

CTV message R′mn and ∆mn by

R′mn = Qmn1
⊞Qmn2

⊞ · · · ⊞Qmnk
, (2)

∆mn = R′mn −Rmn, (3)

where n1, n2, · · · , nk ∈ {Nm \ n} and Nm \ n denotes the

set of all the CNs connected with VN n except CN m. The

⊞ operation is defined as below:

x⊞ y = sign(x)sign(y)min(|x|, |y|) + S(x, y), (4)

S(x, y) = log(1 + e−|x+y|)− log(1 + e−|x−y|). (5)

3) Update the APP values and make hard decisions

L′n = Ln +
∑

m

∆mn. (6)

The decoder makes a hard decision to get the decoded bit

xn by quantizing the APP value L′n into 1 and 0, that is, if

L′n<0 then xn = 1, otherwise xn = 0. The decoding process

terminates when the codeword x satisfies H · xT = 0, or the

pre-set maximum number of iterations is reached. Otherwise,

go back to step 2 and start a new iteration of decoding.

C. Scaled Min-Sum Algorithm

The min-sum algorithm (MSA) reduces the decoding com-

plexity of the SPA with minor performance loss [6][7]. The

Rmn calculation in the scaled MSA can be expressed as below:

R′mn = α ·
∏

n′∈{Nm\n}

sign(Qmn′) · min
n′∈{Nm\n}

| Qmn′ |, (7)

where α is the scaling factor to compensate for the perfor-

mance loss in the min-sum algorithm (α = 0.75 is used) [7].

III. IMPLEMENTATION OF THE LDPC DECODER ON GPU

In this work, we use the Computer Unified Device Archi-

tecture (CUDA) programming model to implement the LDPC

decoder. In order to reduce the complexity of the LDPC

decoder, loosely-coupled algorithm [8] and forward-backward

traversal scheme [9] are employed. Due to the space limit, the

details of these two algorithms are not discussed here.
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Fig. 2. Multi-codeword parallel decoding algorithm. The 802.11n (1944, 972)
code is assumed. NCW represents the number of codewords in one Macro-
codeword (MCW). NMCW represents the number of MCWs. Total number
of thread blocks: 12·NMCW ; total number of threads: 12·NMCW ·NCW ·Z.

A. Mapping LDPC Decoding Algorithm to GPU Kernels

According to Equations (2), (3) and (6), the decoding

process can be split into two stages: the horizontal processing

stage and the APP update stage. We can create one compu-

tational kernel for each stage, which runs in the GPU. The

host code running in the CPU takes charge of the CUDA

initialization and memory copy between host and device.

1) CUDA Kernel 1: Horizontal Processing: During the

horizontal processing stage, since all the CTV messages are

calculated independently, we could use many parallel threads

to process these CTV messages. For an M ×N H matrix, M
threads are spawned, and each thread processes a row. Since

all non-zero entries in a sub-matrix of H have the same shift

value (one square box in Fig. 1), threads processing the same

layer (a row of square boxes in Fig. 1) have almost exactly the

same operations when calculating the CTV messages. Msub

thread blocks are used and each consists of Z threads. Taking

the 802.11n (1944, 972) LDPC code as an example, 12 thread

blocks are generated, and each contains 81 threads, so there

are a total of 972 threads used to calculate the CTV messages.

2) CUDA Kernel 2: APP value update: During the APP

update stage, there are N APP values to be updated. Similarly,

the APP value update is independent among variable nodes.

Thus, Nsub thread blocks are used, with Z threads in each

thread block. In the APP update stage, there are 1944 threads

which are grouped into 24 thread blocks working concurrently

for the 802.11n (1944, 972) LDPC code. Kernel 2 finally

makes a hard decision for each bit.

B. Multi-codeword Parallel Decoding

Since the number of threads and thread blocks are lim-

ited by the dimensions of the H matrix, multi-codeword

decoding is needed to further increase the parallelism of the

workload. A two-level multi-codeword scheme is designed.

NCW codewords are first packed into one macro-codeword

(MCW). Each MCW is decoded by a thread block and NMCW

MCWs are decoded by a group of thread blocks. The multi-

codeword parallel decoding algorithm is described in Fig. 2.

Since multiple codewords in one MCW are decoded by the

threads within the same thread block, all the threads follow the

same execution path. Moreover, the latency of read-after-write

dependencies and memory bank conflicts can be completely

hidden by a sufficient number of active threads.
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Fig. 3. The compact representation for H matrix. The H matrix is the same as
in Fig. 1. After the horizontal compression and vertical compression, we get
Hkernel1 and Hkernel2, respectively. Each entry of the compressed H matrix
contains 4 8-bit data indicating the row and column index of the element in
the original H matrix, the shift value and a valid flag which shows whether
the current entry is empty or not.

C. Implementation of Early Termination Scheme

The early termination (ET) algorithm is used to avoid

unnecessary computations when the decoder already converges

to the correct codeword. For the LDPC codes, the parity check

equations H · xT = 0 can be used to verify the correctness of

the decoded codeword. A new CUDA kernel with M threads is

launched and each thread calculates one parity check equation

independently. Since the decoded codeword x, compact H

matrix and parity check results are used by all the threads,

on-chip shared memory is used to speed up the memory

access. After the concurrent threads finish computing the parity

check equations, we reuse these threads to perform a reduction

operation on all the parity check results to generate the final ET

check result, which indicates the correctness of the codeword.

For multi-codeword parallel decoding, we propose a tag-based

ET algorithm. We assign one tag per codeword and mark the

tag once the corresponding parity check equation is satisfied.

Once the tags for all the codewords are marked, the iterative

decoding process is terminated.

D. Optimizing Memory Access on GPU

The latency of memory access is one of the major bot-

tlenecks which limits the performance of the LDPC decoder.

Several memory access optimization techniques are employed

to further increase the throughput.

1) Memory Optimization for H Matrix: Reading from the

constant memory is as fast as reading from a register as long as

all the threads within a half-warp read the same address. Since

all the Z threads in one thread block access the same entry

of the H matrix simultaneously, we can store the H matrix in

the constant memory and take advantage of the broadcasting

mode of the constant memory. Simulation shows that constant

memory increases the throughput by about 8%.

The quasi-cyclic characteristic of the QC-LDPC code allows

us to efficiently store the sparse H matrix. We regard the cyclic

H matrix in Fig. 1 as a 12 × 24 matrix H̄. As is shown in

Fig. 3, we can get the compact matrices Hkernel1 and Hkernel2

by compressing H̄ horizontally and vertically, respectively.

The compact representations of H reduces the device memory

usage, therefore, the time spent on reading the H matrix from

device memory is reduced. Moreover, the number of branch

instructions which may cause throughput degradation are also

TABLE I
DECODING THROUGHPUT ON GPU.

Code type Niter Throughput (Mbps)

log-SPA min-sum

802.11n 5 74.85 74.65
(1944, 972) 10 39.98 39.82

15 27.25 27.18

WiMAX 5 95.8 96.12
(2304, 1152) 10 52.15 52.31

15 35.84 35.98

reduced since there is no need to check whether an entry of

H is empty. Taking the 802.11n (1944, 972) H matrix as an

example, 40% of memory access and branch instructions are

reduced by using the compressed Hkernel1 and Hkernel2.

2) Coalescing Device Memory Access: In CUDA kernel 1,

Rmn and ∆mn values are stored in the device memory. Since

there is only one Rmn value and one ∆mn value per row

in each sub-matrix of H, the compressed format can be used

to store Rmn and ∆mn. Two M × ωr matrices are used to

store Rmn and ∆mn. In total, memory saving for Rmn and

∆mn is more than halved. More importantly, the GPU supports

very efficient coalesced access if all threads in a warp access

the memory locations which have contiguous addresses. By

writing the compressed Rmn and ∆mn matrices column-wise,

all memory accesses to Rmn and ∆mn are coalesced. Simula-

tion shows that 20% throughput improvement is achieved by

coalescing device memory access for Rmn and ∆mn.

IV. EXPERIMENT RESULTS

The experimental setup to evaluate the performance of the

proposed architecture on the GPU consists of an NVIDIA

GTX470 GPU with 448 stream processors, running at

1.215GHz and with 1280MB of GDDR5 device memory. We

implement both the log-SPA and the min-sum algorithm.

A. Throughput Results

Assume the codeword length is Nbits, the total number of

codewords is Ncodeword, the simulation number is NSim, and

the running time is Ttotal, which contains both the decoding

time and the time for memory copy between host and device.

The throughput can be calculated by: Throughput = (Nbits×
NSim × Ncodeword)/Ttotal. According to the capacity of

GTX470 GPU, around 300 codewords are processed in parallel

in the multi-codeword decoding scheme (Ncodeword = 300).

Table I shows the throughput of our implementation for

both the 802.11n code and WiMAX code with different

number of iterations (Niter). The throughput for the log-SPA

algorithm is comparable to the min-sum algorithm. The reason

is that GPU implementation employs very efficient intrinsic

functions logf() and expf(). And the bottleneck for GPU

implementation is in the long latency of the device memory

access, therefore, the run time for the extra instructions in the

log-SPA is hidden behind the memory access latency.

Furthermore, the results also show that the decoder for

the WiMAX code has higher throughput compared to the

802.11n code. The reason is that the row weights (ωr) for
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(a) Log-SPA algorithm
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(b) Scaled min-sum algorithm

Fig. 4. Experiment results for LDPC decoder with early termination scheme
for the 802.11n (1944, 972) codes. The max number of iterations is set to 50.

TABLE II
DECODING THROUGHPUT COMPARISON WITH OTHER WORK.

Work GPU Code Throughput

[10] 8800GT (2048, 1024)a 2.95∼8.0 Kbps (ETd)

[11] Tesla C1060 (4000, 2000)a 2.34 Mbps

[4] 8800 GTX (1024, 512)a 10.0 Mbps
8800 GTX (4896, 2448)a 17.9 Mbps

[5] GTX 285 (1944, 972)b 0.75 Mbps (ETd)

This work GTX 470 (1944, 972)b 39.98 Mbps

(1944, 972)b 22.5∼100.3 Mbps (ETd)
(2304, 1152)c 52.15 Mbps

a Regular codes.
b 802.11n codes, irregular codes.
c WiMAX codes, irregular codes.
d Early termination scheme is used. For others, max Niter = 10. In this

work, the throughput with ET is measured with the EbN0=1.5 ∼ 5dB.

these two codes are similar, which means that the computa-

tional workload is comparable. Therefore, the WiMAX code

which has longer codewords tends to have higher throughput

according to the throughput equation. Furthermore, there are

more arithmetic instructions per memory access for a longer

codeword, which can hide the memory access overhead.

Fig. 4 shows the throughput results and the average number

of iterations with the parallel early termination (ET) scheme.

As the SNR (represented by EbN0) increases, the average

number of iterations decreases and the decoding throughput

increases. Fig. 4 shows that the parallel early termination

scheme significantly speeds up the simulation for the high

SNR. For low SNR, the ET version may be slower than the

non-ET version due to overhead of the ET kernel. Therefore,

an adaptive scheme can be used to speed up the simulation

for the whole SNR range – the ET kernel launches only when

the simulation SNR is higher than a specific threshold.

B. Comparison with Related Work

It is difficult to use massive threads to fully occupy the

computation resources of the GPU when decoding the irregular

LDPC codes. When processing an irregular LDPC code, im-

balanced workloads cause the threads on GPU to complete the

computations at different times and runtime is bounded by the

threads with the most amount of work. Table II compares our

work with the related work. Table II shows that although the

irregular codes we used are theoretically harder to get higher

throughput than the ones in the related work, our decoder still

outperforms the related work with significant improvement,

especially when the parallel ET scheme is used. Our work

is directly comparable to [5] since they also implemented a

decoder for 802.11n (1944, 972) QC-LDPC code. Although

the GPU used in this work has approximately twice the amount

of computation resource as in [5], our decoder achieves

more than 50 times throughput compared to their work. This

huge improvement can be attributed to our highly optimized

algorithm mappings, efficient data structures and the memory

access optimizations.

V. CONCLUSION

This paper presents the techniques and design methodology

to fully utilize a GPU’s computational resources to accelerate

a computation-intensive DSP algorithm. As a case study, a

massively parallel implementation of LDPC decoder on GPU

is presented. To achieve high decoding throughput, several

techniques including efficient algorithm mapping, compact

data structures and memory access optimizations are em-

ployed. We take the LDPC decoder for the IEEE 802.11n WiFi

LDPC code and 802.16e WiMAX LDPC code as examples to

demonstrate the performance of our GPU-based implementa-

tion. The simulation results exhibit that our LDPC decoder

can achieve high throughput around up to 100.3Mbps.
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