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Abstract—Feature detection and extraction are essential in computer
vision applications such as image matching and object recognition. The
Scale-Invariant Feature Transform (SIFT) algorithm is one of the most
robust approaches to detect and extract distinctive invariant features
from images. However, high computational complexity makes it difficult
to apply the SIFT algorithm to mobile applications. Recent developments
in mobile processors have enabled heterogeneous computing on mobile
devices, such as smartphones and tablets. In this paper, we present an
OpenCL-based implementation of the SIFT algorithm on a smartphone,
taking advantage of the mobile GPU. We carefully analyze the SIFT
workloads and identify the parallelism. We implemented major steps of
the SIFT algorithm using both serial C++ code and OpenCL kernels
targeting mobile processors, to compare the performance of different
workflows. Based on the profiling results, we partition the SIFT algorithm
between the CPU and GPU in a way that best exploits the parallelism and
minimizes the buffer transferring time to achieve better performance.
The experimental results show that we are able to achieve 8.5 FPS
for keypoints detection and 19 FPS for descriptor generation without
reducing the number and the quality of the keypoints. Moreover, the
heterogeneous implementation can reduce energy consumption by 41%
compared to an optimized CPU-only implementation.

Index Terms—SIFT, GPU, mobile SoC, CPU-GPU algorithm partition-
ing, OpenCL.

I. INTRODUCTION

Recent advances in the computational capabilities of mobile pro-
cessors have made possible a wide range of computer vision appli-
cations on smartphone and tablet platforms, such as image stitching,
object recognition, and augmented reality. Efficient feature detection
and extraction are essential building blocks for all of these tasks.
The scale-invariant feature transform (SIFT) algorithm can produce
distinctive keypoints and feature descriptors [1], and has been con-
sidered one of the most robust local feature extraction algorithms [2].
Although many alternative or high speed approximation algorithms
to SIFT have been proposed, such as SURF [3], the SIFT algorithm
remains in wide use and is attracting more attention.

Many research efforts have been made in prior works to design
and optimize high speed SIFT implementations. Most of them
use customized hardware or high performance workstations due to
the high complexity of the SIFT algorithm [4]. General-purpose
computing on graphics processing units (GPGPU) has also been
used to speed up the processing of SIFT [5, 6]. However, most
of the design and optimization techniques in these prior works are
not practical for mobile devices, due to their high computational
complexity and memory usage. There are only a few works targeting
SIFT implementations on mobile platforms [7, 8], in which only part
of the SIFT algorithm is accelerated, or feature accuracy is traded
for processing speed.

Throughout the past several years, the power of mobile processors
for parallel computation has improved, by the integration of a
GPU utilizing multiple programmable graphics pipelines. Except for
in the fields of mobile gaming and 3D texture rendering, many
computationally-intensive algorithms can be accelerated by modern
mobile GPUs by means of emerging parallel programming models

such as the Open Computing Language (OpenCL) [9, 10]. Due to the
special hardware architecture of mobile processors, many techniques
previously applied to desktop GPUs are not suitable for mobile
applications. To achieve high performance, we need to analyze the
algorithms and workloads specifically on mobile platforms and find
an efficient mapping to embedded hardware.

With this goal, we present in this paper an OpenCL-based SIFT
implementation using heterogeneous computing techniques on a
mobile processor. The paper is organized as follows. Section II briefly
introduces the architecture of mobile processors and the OpenCL
programming model. Section III describes the SIFT algorithm and its
workflow. Section IV analyzes the different workloads of the SIFT
algorithm and partitions the workflow efficiently onto the CPU and
GPU. Experimental results are presented in Section V. We conclude
our findings in Section VI.

II. OPENCL ON MOBILE PROCESSORS

Modern mobile processors typically consist of a multi-core CPU,
a GPU with multiple programmable graphics pipelines, and image
processing accelerators. There are several differences between mo-
bile GPUs and desktop GPUs, making it challenging to achieve
an efficient, high-performance implementation. Firstly, the memory
bandwidth of mobile GPUs, at several GB/s, is much lower than the
several hundred GB/s of desktop GPUs. Secondly, mobile GPUs have
significantly fewer compute units, typically 32 to 128, than desktop
GPUs, which usually have between 1024 and 3072 discrete compute
units. Thirdly, the clock frequency of mobile GPUs is typically
between 200 and 400 MHz, which is much slower than their desktop
counterparts, which typically reach 1GHz clock frequency. For these
reasons, it is critical that targeted algorithms are carefully analyzed
to find a good mapping to mobile GPUs. On the other hand, the
low clock frequency of mobile GPUs suggests the possibility of
efficient low power designs, in which offloading some parallelizable
computationally-intensive algorithms to GPUs may reduce power
consumption.

The lack of good programming tools is another problem for mobile
GPGPU applications. In the past few years, the OpenGL Embedded
System (OpenGL ES) application programming interface (API) has
been widely used for GPGPU programming on mobile devices.
However, OpenGL ES was designed for graphics, so it is difficult
to use for general-purpose computing, leading to inflexible designs.
Recently, emerging mobile processors have begun to support the
OpenCL API for heterogeneous computing. With OpenCL, parallel
workloads are mapped to work groups, each containing work items
that can share local memory and be synchronized together, allowing
for greater flexibility and performance in GPGPU applications. Our
previous work has shown the capability of mobile GPUs to accelerate
complicated computer vision algorithms using OpenCL [10].
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Fig. 1. Diagram of SIFT keypoint detection algorithm showing one octave
with 6 Gaussian image layers.

III. OVERVIEW OF SIFT

A local feature keypoint represents an image pattern which differs
from its neighboring pixels. The properties of keypoints can be ex-
tracted and described using keypoint descriptors. Keypoint descriptors
are highly distinctive, enabling image matching or object recognition
with high probability in a large database of features [1, 2]. The SIFT
algorithm consists of the following stages to detect keypoints and
extract feature descriptors [1]. The major steps for keypoint detection
are shown in Fig.1

Gaussian pyramid. First, an input image is convolved by a series
of Gaussian smoothing kernels G(x, y, σ) with different σ to get the
first set of images, called the first octave. We downsample the input
image to form the base of a smaller set of images, called the next
octave, which will in turn be smoothed to an even higher scale factor.
Each octave includes a few layers, each corresponding to a different
scale factor σ. In this paper, we use typical algorithm parameters
suggested by Lowe’s paper: 5 octaves and 6 layers in each octave [1].

Difference of Gaussian (DoG) pyramid. We subtract every two
adjacent layers to get DoG pyramids. For each octave, 5 DoG images
are generated.

Keypoint detection and refinement. We compare each pixel in
a DoG image with its surrounding 3 × 3 neighbor pixels from the
current layer, a lower layer and a higher layer. If the value of a pixel
is a maxima or minima among the total 26 neighbors, it is identified
as a keypoint candidate. Then we perform a quadratic interpolation in
scale space around the candidate to refine the accuracy of keypoint
location to subpixel level. Finally, keypoints with low contrast are
considered non-distinctive, so they are rejected.

Gradient orientation assignment. For each keypoint, we compute
the gradient magnitude and orientation angle of the Gaussian pyramid
images for all pixels in a region around the keypoint. We build
an orientation histogram, which partitions 360 degrees of angular
orientation into 36 bins. Each pixel in the KP-region contributes
to one of the 36 bins based on its gradient orientation angle. The
contribution score is the gradient magnitude value weighted by
a Gaussian function G(x0, y0, σ) , where (x0, y0) is the pixel’s
coordinate relative to the keypoint. We then choose the bins with
highest scores as dominant orientations for the keypoints. Each
keypoint can have multiple orientations, and each orientation is used
to generate a unique feature descriptor.

Descriptor generation. A feature descriptor is a vector which
represents the local properties of a keypoint. In this step, a keypoint
region (KP-region) surrounding a keypoint is extracted and rotated
to account for the keypoint orientation. Then, the KP-region is
partitioned into 4 × 4 subregions. In each subregion, we build an
orientation histogram with 8 bins, or 45 degrees per bin. Then, in a
process similar to the gradient orientation assignment step, pixels in

each subregion contribute to the histogram by adding the Gaussian-
weighted gradient magnitude to the corresponding bins. Repeating
this for all 4×4 subregions results in a feature vector of 128 values,
representing 8 bins for each of the 16 subregions. Finally, we truncate
and normalize this vector to form a keypoint descriptor.

IV. ALGORITHM PROFILING AND WORKLOAD PARTITIONING

To better understand the workload and performance of the SIFT
algorithm on mobile devices, we implemented the SIFT algorithm
using both serial C++ and parallel OpenCL computation kernels. The
SIFT algorithms are roughly partitioned into computation functions
based on the workflow described in Section III. By running our SIFT
implementations over a benchmark dataset on a mobile processor,
we measure the processing time for each function for both the
CPU and GPU implementations. The data transfer time between
the host CPU and the device GPU is also counted for the GPU
implementation. Carefully analyzing the profiling results finally leads
to a heterogeneous implementation, which efficiently maps the SIFT
algorithm onto the CPU and GPU in a mobile processor.

A. Experimental Setup

We use 48 images from a benchmark dataset designed for local
feature performance evaluation [2, 11]. The dataset covers transfor-
mations such as blurring, change of viewpoint, zoom, rotation, and
compression. All our test images have widths of 320 pixels, and
image height varies from 214 to 256. We use a mobile device with a
Qualcomm Snapdragon S4 Pro APQ8064 chipset, which includes a
1.5GHz quad-core CPU and an Adreno320 GPU, with four compute
units containing an array of ALUs running at 325MHz. We compiled
our optimized C++ code using the Android Native Development Kit
(NDK) version r8c and OpenCL 1.1. In this section, profiling is
performed on an image called “graf” in the test dataset, as shown
later in Fig.4. The “graf” image has more feature keypoints than other
images, revealing the worst case processing time for the dataset.

B. Data Structure

We first did experiments to determine the necessary data preci-
sion. When using a 32-bit floating point format, 269 keypoints are
extracted, while switching to an 8-bit fixed point format reduces the
number of keypoints to 137. Specifically, we observed that most of
the keypoints for larger scales disappeared with the loss in precision.
In addition, we lose sub-pixel level keypoint accuracy. These facts
could significantly degrade the image matching performance, so we
choose to use the floating point format.

For our OpenCL implementation, we define the data buffers as
the Image2D type, taking advantage of the GPU’s high-performance
texturing hardware, which provides image interpolation, border pixel
handling and texture caching. By doing this, access to image data
is accelerated and branching instructions in the kernel are reduced,
since we do not need to pay special attention to handling the border
pixels.

Packing several grayscale data into an RGBA texel is a popular
technique to reduce the memory bandwidth for GPGPU applications
[5, 8]. In our case, four 32-bit floating point data in a 2 × 2 square
are packed into a CL_RGBA|CL_FLOAT format data. Data packing
is applied to the Gaussian pyramid, DoG pyramid, and gradient
pyramid. We can benefit from reduced device memory accesses, as
well as utilization of the GPU’s vector processing units. With this
data packing approach, we observed a 28% reduction in execution
time for Gaussian pyramid generation, and about a 40% reduction
for gradient pyramid generation.



TABLE I
PROFILING RESULTS FOR THE MAJOR PROCESSING STEPS OF SIFT, USING

THE 320× 256 “GRAF” IMAGE. 269 KEYPOINTS ARE DETECTED.

Time resultsa (ms)
CPU GPU GPU readback

Gaussian pyramid 98.5 52.01 14.38
DoG 16.08 22.68 16.01

Gradient pyramid 80.73 21.00 10.65
Local extrema 14.13 23.50 N/Ab

Keypoint refinement 0.85 7.91 N/Ab

Orientation assignment 30.17 140 N/Ab

Descriptor generation 193.87 148.33 N/Ab

a. Bold fonts indicate our choices for each step.
b. Data transfer time is included in GPU time, due to small data sizes.

C. Implementation of OpenCL Kernel Functions

After analyzing the workflow described in Section III, the fol-
lowing major steps were implemented using separate functions:
Gaussian pyramid generation, DoG pyramid generation, local extrema
detection, keypoint refinement, orientation assignment, and descriptor
generation. It is worth mentioning that both orientation assignment
and descriptor generation require the gradient information, or the
gradient magnitude and orientation angle, of the pixels in the KP-
region. The gradient calculation needs the computationally expensive
dot-product, square root and atan2() operations. Although for each
keypoint, we only compute the gradient for a small KP-region,
experiments show that the gradient information of each pixel is
requested an average of more than one time during the whole SIFT
computation. Therefore, when both the SIFT detector and descriptor
are computed for the same image, it is more efficient to pre-
compute the gradient information for all pixels to avoid redundant
computations. In fact, all keypoints are located on layers 1∼3, so the
orientation and descriptor are only computed on those three layers.
Therefore, we only build the gradient pyramid for layers 1∼3.

In order to take advantage of the parallel architecture of the
mobile GPU, we use an image tiling technique. We divide an
input image into tiles, where each tile is assigned to a work group
consisting of multiple work items, each of which processes one or
more pixels in a tile. Due to the properties of the hardware, the
typical size of a work group is 8 × 8. Image tiling is applied to the
Gaussian pyramid generation, DoG pyramid generation, local extrema
detection, and keypoint refinement kernels, to exploit the parallelism
of the algorithms. However, for orientation assignment and descriptor
generation, computations are only performed in the KP-regions for a
list of keypoints. For these two kernels, we map all work groups to
one KP-region, using atomic instructions to compute the histograms.

D. Profiling Results and Workload Partitioning

In Table I, the processing times are shown for each of the major
steps for both the C++ and OpenCL implementations. The readback
time also includes the time for data unpacking from RGBA format
to the normal image format, since this must happen after memory
readback. In the steps of local extrema detection, keypoint refinement,
orientation assignment and descriptor generation, the GPU readback
time is negligible due to the very small data size.

Since the algorithms for Gaussian pyramid generation, gradient
pyramid generation and descriptor generation provide a sufficient
amount of parallelism, we can benefit from the GPU’s parallel
architecture. The GPU processing time plus data transfer overhead is
shorter than the CPU processing time, indicating that we can achieve
better performance by offloading these functions to the GPU. On the
other hand, the CPU version outperforms the GPU version for the
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Fig. 2. Algorithm partitioning for heterogeneous implementation.

other kernels. Obviously, keeping them on the CPU results in higher
performance. Among them, orientation assignment has much longer
processing time on the GPU than the CPU, since the main operation
in this kernel is histogram computation, which is inherently serial
and becomes a major bottleneck limiting the performance. For DoG
pyramid generation, local extrema and keypoint refinement, the GPU
implementation is slower since the relatively simple computations
cannot fully utilize the GPU’s resources. In these cases, the higher
clock frequency of the CPU leads to better performance. Based on
the profiling results, we partition the SIFT algorithm to a CPU-GPU
heterogeneous implementation to minimize the total processing and
memory transfer time, as shown in Fig.2.

E. Optimization of Parallel Gaussian Pyramid Generation

Generation of the Gaussian pyramid is the most time consuming
step in keypoint detection, so it is necessary to explore optimization
techniques. For desktop GPUs, due to the large number of cores,
we may compute Gaussian blur for all 6 layers in an octave (or
even multiple octaves) in a single parallel kernel. In mobile devices,
the limited number of compute units and onchip memory make the
fully parallel approach infeasible. Following our previous work, in
this implementation, we use a separable two-pass Gaussian filtering
method. We also apply dynamic runtime code generation to produce
branchless OpenCL code [8]. To be specific, we use standard I/O
library functions of C++ to generate formatted OpenCL kernel code
incorporating filter parameters at runtime, so that loops in OpenCL
kernel functions are fully unrolled without branch operations.

In addition to the above approaches, we utilize a recursive Gaussian
blur method which is a good fit for mobile GPUs. The recursive
Gaussian blur is based on the idea that one pass of the Gaussian
blur with σa is equivalent to applying two passes with σb and σc

sequentially if σ2
a = σ2

b + σ2
c . Therefore, a higher layer Gaussian

blur image with σ1 can be generated by applying an extra amount of
blurring (

√
σ2
1 − σ2

0) to the previous layer with σ0. One major benefit
of the recursive Gaussian blur is that the subsequent convolution
is done using small scale factor ∆σ =

√
σ2
1 − σ2

0 , therefore, the
required Gaussian filter kernel can be shorter (which is typically
6σ + 1). A shorter filter kernel means fewer memory accesses,
which allows for an efficient mobile GPU implementation, since low
memory bandwidth is one of the major bottlenecks for the GPU.

Furthermore, layers 0 ∼ 2 in each octave n are directly generated
simply by downsampling the layers 3 ∼ 5 in octave (n − 1)
by one half according to scale space theory, without doing any
Gaussian filtering. Downsampling by one half can be implemented
very efficiently by accessing 1/4 of the pixels without the need for
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Fig. 3. Efficient Gaussian pyramid generation. The procedure for octaves
0 ∼ 2 is shown. For octaves 3 ∼ 4, the process is similar to octave 2.

Fig. 4. Keypoint detection results for “graf”, “ubc”, and “boat” images. Each
circle represents a keypoint, its radius indicating the scale of the feature. The
lines in the circle represent orientation of the keypoints. Numbers of keypoints
are 269, 133, and 192, respectively.

arithmetic operations. Our efficient Gaussian pyramid workflow is
shown in Fig.3, in which for each octave other than the first, we
only need 3 downsample operations and 3 Gaussian blur operations.
The Gaussian blur and downsample blocks are implemented using
OpenCL kernels with the image tiling technique.

V. EXPERIMENTAL RESULTS

We benchmark the complete SIFT implementation with keypoint
detection and descriptor generation on 48 images using the whole
dataset [11]. The keypoint detection results for three images in the
dataset are shown in Fig.4. Thanks to the full precision we used,
there is no performance loss in our heterogeneous implementation
in terms of keypoint number and accuracy, compared to some
popular SIFT implementations for the desktop CPU, such as Lowe’s
implementation [1] and VLFeat [12].

Table II reports the average time per image. For the CPU-only
implementation, we compile the NDK code with both the ARM-v5
and ARM-v7a instruction set architectures. The average number of
keypoints detected per image is 95. First, we notice that ARM-v7a
generates much more efficient code than ARM-v5. For the detection
portion, we observe a 1.69X speedup with the heterogeneous im-
plementation, compared to the CPU-only implementation. With the
heterogeneous implementation, we can achieve 8.5 frames per second
(FPS) for keypoint detection, and 19 FPS for descriptor generation.
We note that a nonnegligible part of time for the heterogeneous
solution comes from memory transfers (24.6ms, which is 21% of
the total detection time). If the next generations of mobile GPUs
can include newer memory technology and faster memory bandwidth
between the CPU and GPU, we foresee greater speedup using
heterogeneous computing techniques.

To measure energy efficiency, we compute SIFT on the same
dataset for several minutes, measure the average system power, and
then subtract the idle system power. We measured 1490mW and
1429mW power consumptions for the CPU-only implementation and
the heterogeneous implementation, respectively. The average energy
consumption per image is 413.0mJ for the CPU-only implementation,

TABLE II
PROCESSING TIME ON THE WHOLE DATASET WITH 48 IMAGES.

Time results (ms)
CPU only CPU+GPU

ARM-v5 ARM-v7a ARM-v7a
Gaussian pyramid 710.96 81.78 40.15

Readback Gaussian N/A N/A 8.32
DoG pyramid 30.28 15.30 12.56

Gradient pyramid 232.37 78.81 16.22
Readback Gradient N/A N/A 16.75

Local extrema 42.94 21.40 20.37(Incl. refinement, orientation)
Keypoint detection total 1015.65 197.43 117.02

Descriptor generation total 261.43 79.74 52.52
Complete SIFT 1278.09 277.18 169.54

and 242.3mJ for the heterogeneous one. Therefore, a 41% reduction
in energy consumption is achieved.

VI. CONCLUSION

This paper presents workload analysis and an efficient imple-
mentation of the SIFT algorithm on a mobile processor. We dis-
cuss efficient algorithm mapping to the GPU architecture based
on profiling results and optimization techniques, with emphasis on
optimized Gaussian pyramid generation. Experiments show that we
can achieve a 1.69X speedup for keypoint detection compared to
an optimized C++ reference design. The frame rates for keypoint
detection and descriptor generation are improved to 8.5 FPS and 19
FPS, respectively. Meanwhile, we reduce the energy consumption by
41%. However, we notice that the limited number of compute units
and the low memory bandwidth between the CPU and GPU are still
bottlenecks for a high speed mobile computer vision application.
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