
Low Complexity Opportunistic Decoder for
Network Coding

Bei Yin, Michael Wu, Guohui Wang, and Joseph R. Cavallaro
ECE Department, Rice University, 6100 Main St., Houston, TX 77005

Email: {by2, mbw2, wgh, cavallar}@rice.edu

Abstract—In this paper, we propose a novel opportunistic
decoding scheme for network coding decoder which significantly
reduces the decoder complexity and increases the through-
put. Network coding was proposed to improve the network
throughput and reliability, especially for multicast transmissions.
Although network coding increases the network performance,
the complexity of the network coding decoder algorithm is still
high, especially for higher dimensional finite fields or larger
network codes. Different software and hardware approaches were
proposed to accelerate the decoding algorithm, but the decoder
remains to be the bottleneck for high speed data transmission.
We propose a novel decoding scheme which exploits the structure
of the network coding matrix to reduce the network decoder
complexity and improve throughput. We also implemented the
proposed scheme on Virtex 7 FPGA and compared our imple-
mentation to the widely used Gaussian elimination.

I. INTRODUCTION

Network coding was first proposed in [1] to increase the
efficiency of multicast transmissions in a network by allevi-
ating traffic at the shared links. In contrast to routing and
packet forwarding in a traditional network, intermediate nodes
with network coding encode the incoming packets before
forwarding them toward the destination. The authors in [2]
showed that linear network coding can achieve the max-flow
bound from the source to each destination node. To simplify
network code design, authors in [3] introduced random linear
network coding. The first practical protocol of network coding
was described in [4]. We adopt the framework described in
[4], where the encoded packets and the corresponding network
coding coefficients are transmitted within the same packet. In
this paper, we attempt to reduce the complexity of the network
decoder, which is required to recover the original messages at
the destination.

Compared with nodes in a traditional network, nodes that
employ network coding require additional computations to
encode and decode the packets. The decoding algorithm at
the destination is particularly intensive. A decoder at the
destination needs to solve systems of linear equations over
a finite field to recover the original information. This limits
the decoding throughput. To address the bottleneck, a number
of publications have discussed different implementations in
software and hardware. In [5], Gaussian elimination is used
to solve a system of linear equations on GPU. To reduce
the latency further, in [6], the authors adopted the Gauss-
Jordan elimination on GPU. In [7], [8], matrix inversions are
performed on the CPU before solving the linear equations

r(1)

x(1)

x(n)
r(n)

t(j)

a(j)
… …

y(1)

y(m)

…

Network

Fig. 1. Network coding system model

on GPU. Although a GPU provides massive computational
power, hardware approaches can outperform these software
solutions. In [9], a hardware network coding decoder on
FPGA was proposed in which Cramer’s rule was used for
solving the linear system of equations. In [10], a network
decoder was implemented on FPGA by using the Gaussian
elimination method. Although these methods increase the
throughput and alleviate traffic bottlenecks, they all inherently
have complexity of O(n3), and they perform a new matrix
inversion for every new set of network coding coefficients.
As a result, the complexity of these schemes increases rapidly
as the size of the network coding coefficient matrix becomes
larger and the dimension of the finite field becomes higher.
This will also limit the throughput and the usage of these
designs for high data rate transmission.

In order to reduce the decoding complexity and increasing
the throughput of the network coding decoder, we propose a
new decoding scheme based on Sherman–Morrison formula
which was summarized in [11]. Instead of performing a
new matrix inversion for every new set of network coding
coefficients with Gaussian elimination or Cramer’s rule, we
compute a new inverse by updating the previous inversion
result. Because only the updated elements in the new matrix
affect the new inversion result, we can at most reduce the
decoding complexity from O(n3) to O(n2).

In section II, an overview of the network coding system
model is introduced. Section III presents our low complexity
opportunistic decoding scheme. Implementation and complex-
ity analysis is given in Section IV. Section V draws the
conclusions.



II. NETWORK CODING SYSTEM MODEL

Consider a communication network with n source nodes,
m destination nodes, and a random network of intermediate
nodes between the source and destination nodes. As shown
in Fig. 1, the n source nodes want to transmit packets to m
destination nodes. The i-th source node first constructs a vector
x(i) of length l, where each element of x(i) is in the finite
field GF(2b). The packets from the source nodes are then sent
to the destination nodes through the network.

As the packets propagate through the network, the interme-
diate nodes will not simply forward the incoming packets. To
improve throughput, the intermediate nodes in the network
adopt random linear network coding [3]. In this case, the
intermediate node creates a new packet by multiplying n
incoming packets with a random network coding vector of
coefficients, a(j) of length n, where each element of a(j) is
randomly generated from the finite field GF(2b). The resulting
encoded packet at immediate node j, t(j), is a length l vector
which can be expressed as:

t(j) = a(j)

r(1)
...

r(n)

 .

When forwarding the encoded packet, the coding coefficients
a(j) are transmitted along with encoded data t(j).

At subsequent intermediate nodes, the coding coefficients
and encoded packet are both updated by the new network
coding coefficients. This will be explained in details in Section
III.

When the packets reach the destination node, the i-th
received encoded packet, y(i), can be expressed as a linear
combination of information packets x(1), . . .x(n),

y(i) = g(i)

x(1)
...

x(n)

 ,

where y(i) is a length l vector, and g(i) is a length n
vector of the corresponding network coding coefficients. The
g(i) is a linear combination of random generated coefficients
a(j) along the propagation path. To recover the packets
x(1), . . . ,x(n) sent by the source nodes, a destination node
needs to receive n independent packets. All the received
packets are put in an n × l matrix Y, and all the received
network coding coefficients are put in an n× n G matrix:

G =

g(1)
...

g(n)

 ,

Y =

y(1)
...

y(n)

 .

Then the decoder at the destination node can multiply the
received packets Y by the inverse of G to decode the original
packets x(1), . . .x(n),

x(1)
...

x(n)

 = G−1Y. (1)

The above decoding will be performed at each destination
node to recover the original packets. As the network cod-
ing coefficients are randomly generated in the network, the
coefficient matrix G may not be invertible. To alleviate this
problem, higher dimensional finite fields and larger network
coding coefficients matrices are suggested in the literature
[4]. However, these two methods increase complexity of the
corresponding network coding decoder.

III. LOW COMPLEXITY OPPORTUNISTIC DECODER

To recover the original packets, each destination node needs
to solve systems of linear equations as shown in (1) in a
finite field. The simplest method is to always use Gaussian
elimination to invert G for each new set of packets. However,
the complexity of this method is O(n3). For larger network
coding coefficient matrices and higher dimensional finite
fields, this method results in high hardware complexity and
low throughput. To solve this problem, we propose a method
which does not always invert G from scratch. We observe that
the final network coding coefficients at the destination nodes
are related to the path that the packets traverse through the
network. Particularly, the routes that the packets take from the
source nodes to the destination nodes may not change signif-
icantly from transmission to transmission, especially for low
mobility networks. As a result, network coding coefficients are
not completely different from one transmission to the next.
By exploiting this feature, we can reduce the complexity of
the network coding decoder to O(n2) and also increase the
throughput.

A. Decoding algorithm

Suppose the network coding coefficient matrix from the
first set of packets is G1 and the network coding coefficient
matrix from the second set of packets is G2. In the network,
the packets pass through a few stages and arrive at the
destination. Assume the network coding coefficients of these
stages are a(1), . . . ,a(n), b(1), . . . ,b(n), c(1), . . . , c(n),
d(1), . . . ,d(n), and e(1), . . . , e(n). Thus, the network coding
coefficient matrix G1 at the destination is represented as

G1 =

g1(1)
...

g1(n)


=

e(1)
...

e(n)


d(1)

...
d(n)


c(1)

...
c(n)


b(1)

...
b(n)


a(1)

...
a(n)





During the second set of packet transmissions, if the net-
work coding coefficients in one node c(i) are changed to
cnew(i), then the network coding coefficient matrix G2 is

G2 = G1 + ∆

=

g1(1)
...

g1(n)

 +

e(1)
...

e(n)


d(1)

...
d(n)


 0
cdiff (i)

0


b(1)

...
b(n)


a(1)

...
a(n)

 ,

which can be simplified to:

G2 = G1 + edcol(i)cdiff (i)BA

= G1 + uv.

where edcol(i) is the i-th column of the matrix product of ED,
u is a column vector and equals to edcol(i), v is a row vector
and equals to cdiff (i)BA, and cdiff (i) = cnew(i)− c(i) .

This equation shows that if the coefficients of a stage
change, the change to the network coding coefficient matrix
G is a matrix and equals to uv. Based on this observation, we
apply Sherman-Morrison formula to obtain the matrix inverse
[11] instead of inverting G for every transmission. When a
destination node first receives the matrix G1, the node will
perform a full matrix inversion, G−1

1 , to solve the system of
linear equations. For subsequent sets of packets arriving at the
destination, the decoder may not need to compute G−1

2 by
performing the full inversion. For example, if the difference
between G1 and G2 is one row, one column, or can be
decomposed into uv, we can compute G−1

2 by updating G−1
1 :

G−1
2 = (G1 + uv)−1

= G−1
1 +

G−1
1 uvG−1

1

1− vG−1
1 u

, (2)

where u is a column vector and v is a row vector. For example,
if the difference between G1 and G2 is one row, u will be
a unit column vector with an one at the corresponding row
and zeros at all other positions, and v will be a row vector
which is the difference. If the difference between G1 and G2

is one column, then u will be a column vector which is the
difference, and v will be a unit row vector with an one at the
corresponding column and zeros at all other positions. The
term 1− vG−1

1 u in the equation is a scalar value. Compared
to the full matrix inversion case, only one inversion is needed
to compute (1− vG1−1u)−1 in our proposed algorithm.

If more rows or columns in the network coding coefficient
matrix are changed, the above algorithm can be applied
iteratively. The difference can be decomposed into a series
of u vectors and v vectors, with

G−1
2 = (G1 + u1v1 + u2v2 + ... + unvn)−1

where ui can be a unit column vector with i-th element
equivalent to one, and vi is row vector of i-th row difference
between G1 and G2, Alternatively, vi can be a unit row vector

Previous 
Inversion

Matrix inverse 
updating

Difference 
between G2(i) 

and G1(i)

G2(i)

G1(i)

Inverse of G2
Inv(G2) x Y

Y

X

Iterative network 
coding decoder

Fig. 2. Block diagram of proposed iterative decoder.

with i-th element equivalent to one, and ui is column vector
of i-th column difference between G1 and G2.

In fact, we can compute the full inversion of matrix G2 by
performing the updating iteratively,

G−1
21

= (G1 + u1v1)−1

then:

G−1
2 = (G2n−1 + unvn)−1

Computing the full inverse as a series of updates will take n
iterations.

B. Implementation of low complexity opportunistic decoder

As the algorithm computes the inverse iteratively from row
to row, the matrix inverse updating does not need to wait
until the matrix G2 is completely received. To reduce the
decoding latency, the updating process can begin as soon as
a new row G2(i) is received. If the received row G2(i) is
same as the previous stored row G1(i), no update needs to be
performed for the current row. If the received row G2(i) is
different from the previous stored row G1(i), we can assume
subsequent rows of G2 and G1 are identical, and then apply
(2) to update the inverse. As the matrix inverse updating
algorithm is performed in a finite field, this algorithm will
not accumulate error on each iteration. When we receive all
the rows of G2, we have compute the inverse of G2. We can
recover the original X by multiplying G−1

2 with Y.

The architecture of the proposed network decoder using
this scheme is shown in Fig. 2. The decoder consists of a
difference search block, a matrix inversion block, a matrix
multiplication block, and buffers to store the previous network
coding coefficients and the corresponding inverses.

After receiving a new row of the network coding coefficient
matrix G2(i), the difference block computes G2(i)−G1(i) in
a finite field. The subtraction is implemented as parallel XOR
operations. In total, n XOR modules are used, and each XOR
has b bits.

To compute the new matrix inverse G−1
2 , the term vG−1

1 is
first computed from G−1

1 which is computed from the previous
set of packets. Finite field multiplications and additions are
used. The finite field addition is b-bit XOR operations. There
are a few ways to implement the finite field multiplication.
We use the polynomial based two step classic multiplication



TABLE I
COMPLEXITY COMPARISON

Design Finite Field Coefficient Matrix Size Registers LUTs Frequency Throughput
Gaussian Elimination 256 4× 4 1,675 19,583 50.7 MHz 0.8 Gbps(Xilinx XC4VLX60)[10]

256 4× 4 841 2,603 365 MHz 11.68 Gbps

Proposed Matrix Inversion 256 8× 8 2,601 10,403 365 MHz 23.36 Gbps(Xilinx XC7VX330T)

65,536 4× 4 1,644 7,432 200 MHz 12.8 Gbps

instead of the lookup table based multiplication[12]. This is
because the lookup table is associated with a certain finite
field, if a different finite field is used, the lookup table has
to be completely redesigned. Therefore, polynomial based
multiplication is more flexible. The design can switch between
different finite fields. Because each number in a finite field
can be represented as a polynomial, the multiplication of
two finite field numbers corresponds to multiplication of two
polynomials. This consists of shifters and XORs. After this,
the product is moduloed the irreducible polynomial of the
corresponding finite field. The irreducible polynomial is stored
in the memory and the modulo operation is equivalent to a
linear mapping from the product back to a b-bit polynomial.
The linear mapping is computed on the fly from the irreducible
polynomial.

The division in (1 − vG−1
1 u)−1 is computed with a finite

field inverse module. Because the term (1 − vG−1
1 u)−1

is a scalar value, only one inverse module is needed. The
Extended Euclidean algorithm is used find the inverse. This
algorithm not only computes the greatest common divisor
(gcd) polynomial of two polynomials gcd(a(x), b(x)), but
also finds two polynomials, u(x) and v(x), which satisfy
gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x). Since the gcd of the
irreducible polynomial f(x) and the other polynomial in the
field a(x) is 1, a(x)u(x) + f(x)v(x) = 1. This means that
mod(a(x)u(x), f(x)) = 1, and a(x)−1 = mod(u(x), f(x)).
By using this method, 1−vG−1

1 u can be computed instead of
using lookup table. Then (1−vG−1

1 u)−1 is multiplied with u.
Since u is a unit vector, multiplication is actually not needed.

This above schedule first computes G−1
1 u/(1 − vG−1

1 u)
and vG−1

1 . These two terms are multiplied together. Compared
to computing uv followed by G−1

1 uvG−1
1 , this reduces the

number of operations. This schedule uses one vector-vector
multiplication and two vector-matrix multiplications, while the
latter needs one vector-vector multiplication and two matrix-
matrix multiplications.

IV. IMPLEMENTATION RESULT AND COMPLEXITY
ANALYSIS

The complexity of the above scheme depends on how
many elements are changing in the network coding coefficient
matrix. In general, the complexity is O(n2).

If only one element of the network coding coefficient matrix
is changed, the above algorithm needs n2 multiplications,
where n is the number of rows of G. If only one row

or one column of the network coding coefficient matrix is
changed, the above algorithm requires 2n2 multiplications.
To generalize, if m rows or columns of the network coding
coefficient matrix were changed, the above algorithm can run
iteratively from row to row or column to column, which needs
2mn2 multiplications. For Gaussian elimination, a total of
5/6 ·n3 number of multiplications are needed for the inversion.
As a result, our scheme can reduce the complexity of the
destination node if the number of changed rows or columns
m is less than or equal to 5/12 · n. The proposed decoder is
an opportunistic decoder. Because in the best case, when no
element in the matrix is changed, no updating needs to be
performed. In the worst case, the complexity is around 2n3.

Our design is implemented on a Xilinx Virtex 7 FPGA. The
results are shown in Table I. The implementation results are
compared with [10], which uses Gaussian elimination. With
the same finite field size of 28 and the same 4 × 4 network
coding coefficient matrix, our design has only 14% complexity
and is around 14 times faster than the one which uses Gaussian
elimination [10]. The frequency is more than 7 times faster.
With an 8 × 8 network coding coefficient matrix size, the
throughput of our design is doubled compared to the 4 × 4
case, because the received data Y is doubled. With higher
finite field of 216, the throughput of our design is not doubled
but slightly higher than the 4×4 case. This is because although
the number of bits per symbol is doubled in 216 compared to
28, the maximum attainable frequency is lower. As the field
becomes higher, the computational time and complexity of
finite field multiplication and inverse are also increased.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a low complexity opportunistic de-
coder for network coding. In contrast to conventional schemes,
our scheme computes the inverse of the current network coding
coefficient matrix from the previously computed inverse by
exploiting the matrix structure. By implementing the algo-
rithm on FPGA, we show that our scheme can significantly
reduce the complexity compared to Gaussian elimination and
increases the decoding throughput to above 11.68 Gbps. With
a higher field of 216 , our design can achieve 12.8 Gbps. This
indicates that our scheme can reduce the decoding bottleneck
and is suitable for high speed data transmission.

ACKNOWLEDGMENTS

This work was supported in part by Renesas Mobile and
by the US National Science Foundation under grants ECCS-



1232274, EECS-0925942 and CNS-0923479.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, 2000.

[2] S. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE
Transactions on Information Theory, vol. 49, pp. 371–381, 2003.

[3] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[4] P. A. Chou, Y. Wu, and K. Jain, “Practical Network Coding,”
http://research.microsoft.com, 2003.

[5] P. Vingelmann, P. Zanaty, F. Fitzek, and H. Charaf, “Implementation of
Random Linear Network Coding on OpenGL-enabled Graphics Cards,”
in European Wireless, Aalborg, Denmark, May 2009.

[6] H. Shojania, B. Li, and X. Wang, “Nuclei: GPU-accelerated many-core
network coding,” in Proceedings of IEEE INFOCOM, 2009, pp. 459–
467.

[7] X. Chu, K. Zhao, and M. Wang, “Massively Parallel Network Coding
on GPUs,” in IEEE International Performance, Computing and Com-
munications Conference (IPCCC), Dec. 2008, pp. 144–151.

[8] L. Huang, R. Wang, Y. Huang, G. Wang, and X. Zhang, “An Improved
Parallelized Random Linear Network Coding Algorithm on GPU,”
International Conference on Networking and Distributed Computing,
pp. 79–82, 2011.

[9] M. Zhang, H. Li, F. Chen, H. Hou, H. An, W. Wang, and J. Huang,
“A General Co/Decoder of Network Coding in HDL,” in International
Symposium on Network Coding (NetCod), July 2011, pp. 1–5.

[10] T. Yoon and J. Park, “FPGA Implementation of Network Coding De-
coder,” IJCSNS International Journal of Computer Science and Network
Security, vol. 10, p. 12, Dec. 2010.

[11] W. W. Hager, “Updating the Inverse of a Matrix,” SIAM Review, vol. 31,
no. 2, pp. 221–239, 1989.

[12] J. P. Deschamps, J. L. Imana, and G. D. Sutter, Hardware Implementa-
tion of Finite-Field Arithmetic. McGraw Hill, Mar. 2009.


