
Highly Scalable On-the-Fly Interleaved Address

Generation for UMTS/HSPA+ Parallel Turbo Decoder

Aida Vosoughi
1
, Guohui Wang

1
, Hao Shen

1
, Joseph R. Cavallaro

1
, and Yuanbin Guo

2

1 Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
2 Wireless R&D, US Research Center, Futurewei Technologies, Plano, Texas, USA

{vosoughi, wgh, hs9, cavallar}@rice.edu, yuanbinguo@huawei.com

Abstract— High throughput parallel interleaver design is a major

challenge in designing parallel turbo decoders that conform to

high data rate requirements of advanced standards such as

HSPA+. The hardware complexity of the HSPA+ interleaver

makes it difficult to scale to high degrees of parallelism. We

propose a novel algorithm and architecture for on-the-fly parallel

interleaved address generation in UMTS/HSPA+ standard that is

highly scalable. Our proposed algorithm generates an interleaved

memory address from an original input address without building

the complete interleaving pattern or storing it; the generated

interleaved address can be used directly for interleaved writing

to memory blocks. We use an extended Euclidean algorithm for

modular multiplicative inversion as a step towards reversed

intra-row permutations in UMTS/HSPA+ standard. As a result,

we can determine interleaved addresses from original addresses.

We also propose an efficient and scalable hardware architecture

for our method. Our design generates 32 interleaved addresses in

one cycle and satisfies the data rate requirement of 672 Mbps in

HSPA+ while the silicon area and frequency is improved
compared to recent related works.

Keywords—Turbo decoder; Interleaved Address Generation;

Interleaved writing; UMTS; HSPA+; Parallel turbo decoder

I. INTRODUCTION

Turbo code has been adopted as the forward error
correction channel code in many of the existing and new
wireless communication standards such as Universal Mobile
Telecommunications System (UMTS), High-Speed Packet
Access Evolution (HSPA+) and Long Term Evolution (LTE).
The most recent HSPA+ standard ‎[1] supports up to 337.5
Mbps in downlink, and up to 672 Mbps has been proposed for
the future 3GPP extension ‎[2]. To keep up with the ever-
growing data rate requirements in the standards, parallel and
high-throughput turbo decoders have attracted a lot of interest
recently ‎[3]--‎[8]. Turbo decoding consists of a sequence of
iterations. Each iteration includes two Soft Input Soft Output
(SISO) decoding half-iterations and an interleaving step
between two half-iterations. An interleaver permutes bits in a
pseudo-random fashion and hence makes error distribution
more uniform; this effect increases the performance of the
channel code. In a parallel turbo decoder, the block of bits are
divided into multiple sub-blocks and are fed to multiple
parallel SISO decoders; therefore, parallel interleaver blocks
are essential in a parallel turbo decoder.

A naïve approach for implementing an interleaver is to use
lookup tables (LUT) to store all of the possible interleaving
patterns in a memory. The excessive memory requirement of

Fig. 1. Memory access scheduling in turbo decoding. (a) Conventional way.

Write back means the data is written back to the same address from which it is

read (b) Proposed scheduling for high-throughput parallel decoding [3].

Numbers in parentheses show scheduling steps.

this approach makes it unattractive for highly parallel turbo
decoders. Therefore, on-the-fly interleaving has been preferred
to the LUT approach in almost all of the recent turbo decoder
designs.

Often, turbo decoders use memory blocks to store the
intermediate values in between decoding iterations. Therefore,
the read and write memory addresses are interleaved.
Traditionally, each parallel SISO decoder in a parallel turbo
decoder performs in-order read in the first half-iteration and
interleaved read in the second half iteration. Also, in both half
iterations data is written back to the same address from which
it is read from ‎[7], ‎[9] (see Figure 1(a)). However, memory
contention (i.e. when multiple reads/writes are performed by
multiple SISO decoders on the same memory block at the same
time) is a key obstacle in achieving high throughput turbo
decoders. We have shown in recent work [3] that a new
scheduling consisting of in-order reading in both half-iterations
and interleaved/de-interleaved writing in first/second half-
iterations eliminates reading conflicts and therefore simplifies
the hardware and improves the turbo decoder throughput
(please refer to [3] for details). Figure 1(b) shows the new
turbo decoding memory access scheduling introduced in [3]. In
such a configuration, writing to memory is done in an
interleaved fashion; that is, data is read (in order) from an
(original) address a, but after processing, the corresponding
result must be written into the address calculated as
interleaved(a) (or I(a)); therefore, we need to generate the
interleaved addresses from the original addresses.

Fig. 2. (a) UMTS/HSPA+ memory interleaving process example for minimum block size (K=40). As an example, for interleaved writing, we need the mapping
I(1)=39 and I(17)=2, where I(.) is the interleaved address generation function that takes original address and outputs interleaved address. (b) UMTS/HSPA+
interleaver algorithm mapping for block size 40, StdAlg(.) is the UMTS/HSPA+ standard interleaving algorithm. (c) UMTS/HSPA+ memory de-interleaving process
for minimum block size (K=40). For de-interleaved writing, we need D(2)=17 and D(39)=1, where D(.) is the de-interleaved address generation function.

The previously proposed on-the-fly UMTS interleavers ‎[5],
‎[6], ‎[9]--‎[12] are designed to be used in parallel turbo decoders
with conventional scheduling, where reading is done in an
interleaved fashion. In these methods, when the b-th
interleaved data must be read, the original address of b is
computed and used for reading. Therefore, the original
addresses are generated from interleaved addresses based on
the closed form permutation expressions given in the UMTS
standard ‎[1]. However, these interleaving methods cannot be
used in the new highly-parallel high throughput turbo decoders
that use a memory access scheduling based on the proposed
method in [3], because they are unable to generate interleaved
address from an original address.

In the new proposed scheduling that minimizes memory
contention [3] (shown in Figure 1(b)), reading is in-order and
writing to memory is done in interleaved (or de-interleaved in
second half-iteration) order. For interleaved writing, we need
to perform the reversed form of standard permutations ‎[1] to
derive interleaved addresses from original addresses. In this
paper, we propose a novel method to perform interleaved
writing without wasting resources to produce the whole
interleaving pattern (sequence of addresses). Our contributions
are: (1) We propose an algorithm to generate an interleaved
address from any arbitrary original input address which
can be used efficiently for interleaved writing to memory. The
output address is generated on-the-fly without the need for a
sort or search through a pattern; moreover, our method does
not require storing patterns in a memory. (2) We propose and
implement an efficient interleaved address generation hardware
architecture for the introduced algorithm. We report the
resource usage and timing results of our implementation in
ASIC library TSMC 65nm. (3) We show that our proposed
interleaving method and architecture are easily and efficiently
scalable for a highly parallel turbo decoder. Resource reuse
makes this extension affordable.

II. UMTS/HSPA+ STANDARD INTERLEAVER

The turbo code interleaver algorithm for UMTS/HSPA+ is
described in the standard ‎[1]. In a nutshell, the UMTS/HSPA+
turbo interleaver works as follows: First, the block of input bits
is padded by dummy bits and is shaped into a rectangular

matrix. The rectangular matrix is then permuted with intra-row
and inter-row pseudo-random permutations. Finally, bits are
read from the matrix and pruned back to the original block
length. The UMTS standard interleaver consists of several
computationally costly steps such as multiplication and modulo
operation. Moreover, UMTS/HSPA+ interleaver has not
originally been designed for parallel decoding and is not
contention-free ‎[4]. These complications have made
UMTS/HSPA+ interleaver attractive for research in the last
decade. As explained previously, turbo decoders are often
implemented such that the intermediate values are stored in a
memory. Figure 2(a) shows the memory interleaving process in
UMTS/HSPA+ standard for the minimum block size of 40.
The input bit sequence to the interleaver is denoted by
 . For interleaved writing, our desired on-the-
fly interleaved address generator must take the current
(original) memory address of a value and output the
corresponding interleaved address (i.e.). For
example, as shown in Figure 2(a), the interleaved address
generation unit must produce I(1)=39 and I(17)=2. However,
the UMTS/HSPA+ interleaving algorithm generates a pattern
like the one shown in Figure 2(b). This mapping, denoted by
function StdAlg(.), is not equivalent to our desired mapping.
For instance, StdAlg(1)=25 and StdAlg(17)=22. Therefore, the
original UMTS/HSPA+ interleaving algorithm cannot be
directly applied for interleaved writing where we need to
generate an interleaved address from its original position.
In fact, the standard algorithm can be used, as is, for de-
interleaved address generation (for de-interleaved writing).
Figure 2(c) shows the standard de-interleaving process for
K=40 (function D(.)). Note that the desired mapping for de-
interleaving, shown in Figure 2(c), is exactly equal to the
mapping that the UMTS/HSPA+ standard algorithm generates
(Figure 2(b)). For instance, D(2)=StdAlg(2)=17 and
D(39)=StdAlg(39)=1.

In the next section, we propose a method that performs
reversed permutations to generate the desired function that
takes original addresses as input and generates the interleaved
addresses as output. Although the described algorithm here is
specific to UMTS/HSPA+ standard interleaver, the same
methodology for generating reversed permutations can be

address value

0 x0

1 x1

2 x2

3 x3

… …

17 x17

… …

37 x37

38 x38

39 x39

address value

0 x33

1 x25

2 x17

3 x9

… …

17 x22

… …

37 x23

38 x15

39 x1

Interleaving
Input addr Output addr

0 33

1 25

2 17

3 9

… …

17 22

… …

37 23

38 15

39 1

StdAlg(.)

address value

0 x0

1 x1

2 x2

3 x3

… …

17 x17

… …

37 x37

38 x38

39 x39

address value

0 x33

1 x25

2 x17

3 x9

… …

17 x22

… …

37 x23

38 x15

39 x1

De-interleaving

(a) (b) (c)

adopted in other communication standards that make use of a
pseudo-random interleaver for turbo code [13].

III. PROPOSED ALGORITHM FOR UMTS/HSPA+

INTERLEAVED ADDRESS GENERATION

In this section, we first describe the steps of our proposed
algorithm for on-the-fly interleaved address generation based
on the UMTS/HSPA+ standard interleaving algorithm ‎[1] and
then discuss the main steps in more detail. Please refer to
UMTS standard [1] for details of the algorithm. Our proposed
method extends the standard algorithm to perform the reversed
form of the standard intra- and inter-row permutations. As a
result, we generate an interleaved address from an input
address. The notations are adapted from the standard and are
listed below.

 : Input to the algorithm (original address to be
interleaved), : Output of the algorithm (interleaved address),
 : Block size, : Number of rows of rectangular matrix, :
Number of columns of rectangular matrix, : Row index of in
the original rectangular matrix, : Column index of in the
original rectangular matrix, : Row index of in the
interleaved rectangular matrix, : Column index of in the
interleaved rectangular matrix, : Prime number, : Primitive
root, : Base sequence for intra-row

permutation, : Reverse of base sequence

for intra-row permutation, : Minimum prime integers, :
Permuted prime integers, : Modular multiplicative inverse
of , : Inter-row permutation pattern,

 : Reverse of inter-row permutation

pattern, : The number of dummy bits in

columns with index smaller than in the interleaved matrix,
 : The set of column indexes of dummy bits
after interleaving, : The row index of dummy
bits after interleaving (note that the entire dummy values reside
in a same row after interleaving).

The steps of the proposed algorithm for interleaved address
generation are listed below. Steps ‎(1)--‎(4), ‎(6), and ‎(7) are
equivalent to the standard algorithm ‎[1]. Steps ‎(5), (8), ‎(10),
and ‎(11) include the main contribution of our proposed
algorithm (these steps are boldface in the text). These steps are
designed to reverse the standard intra-row and inter-row
permutations. This is needed to generate interleaved address
from original address.

A. Steps of the Proposed Algorithm

(1) Derive the number of rows of the rectangular matrix:

(2) Determine the prime number to be used in the intra-row
permutation, , and the number of columns, :

If then and , otherwise,
find the minimum prime number, , from prime number
table from the standard ‎[1] such that ,
and determine such that,

 ; if ;

 ; if ;
 ; if ;

(3) Select the primitive root, , associated with the selected
prime number, , from standard prime number table.

(4) Construct the intra-row permutation sequence :
 , and

 .

(5) Construct the sequence from such that,

s .

(6) Determine the prime integer in the sequence
 to be the least prime integer such that

 (gcd denotes
the greatest common divisor). Assign .

(7) Permute the sequence to make sequence
 as follows: ,
 where is one of the four possible inter-row
permutation patterns defined in the standard [1] based on
 and .

(8) Construct the modular multiplicative inverse

sequence ,where

 for (i.e. is the modular

multiplicative inverse of modulo).

(9) Determine the row index () and the column index () of

the original input address ():

 , and

(10) Perform the proposed reversed intra-row

permutation as shown in Figure 3.

Fig. 3. Reversed intra-row permutation for Step (10)

(11) Perform the inter-row permutation:
 . is the reverse of the standard inter-

row permutation pattern i.e. ,
for).

if
 if

 ;
 else
 ;
if
 if) and and

 ;
 else if and and
 ;
 else
 if

else if

 ;
else

 ;
if

(12) Derive the output interleaved address
 .

(13) Exception: if and
 , then decrement by 1: .

B. Description of Main Interleaved Address Generation

Algorithm Steps

In the standard UMTS/HSPA+ interleaving algorithm, the
inter-row permutation is performed based on the

pattern where is the original row

position of the i-th permuted row. In contrast, our proposed
method uses sequences to derive the permuted row from
the original row. The UMTS standard intra-row permutation
works as the following pseudo-code describes [1]:

In the closed-form expression in the standard, is the
original column position of -th permuted column of -th row,
where and . However, our
goal is to derive the interleaved column from the original
column; therefore, for our proposed algorithm (in step (10)),
we go backward in the equations explained above. We use
 instead of and modular multiplicative inverses of
in reversed intra-row permutation (step ‎(10)) for this purpose.

The modular multiplicative inverse of an integer modulo
 is an integer such that: , and it exists if
and only if gcd(,)=1, where gcd is the greatest common
divisor [14]. Since is a permutation of sequence and
for every element of we have ,
therefore the multiplicative inverse modulo exists for
every element of The modular multiplicative inverse of
modulo can be found using the extended Euclidean
algorithm, which besides finding the greatest common
divisor of integers and as the Euclidean algorithm does,
also finds integers and that satisfy Bézout's identity:
 . When and are coprime (i.e.
gcd(,)=1), is the modular multiplicative inverse of
modulo , and is the modular multiplicative inverse
of modulo [14]. Figure 4 shows the pseudo-code for
iterative extended Euclidean algorithm that we use in our
design.

To elaborate how the backward intra-row permutation in
step (10) of our proposed algorithm, is derived from the
standard intra-row permutation algorithm, we consider the case
where . According to the standard we have
 , where is the original column
index, is the original row index, and is the permuted column
index. In the proposed algorithm we denote the original
column, original row, and permuted column index, by , , and
 respectively. Therefore with replacement we have
 .

Fig. 4. Extended Euclidean algorithm for modular multiplicative inverse.

Output LastA is the modular multiplicative inverse of input x modulo input q

[14].

In this equation, , are known and is the desired value to be
found.
 ,
Performing function on both sides, we have:

 .

Since by definition :
 .
Multiplying both sides by we get:

Since, is the modular multiplicative inverse of

 .
Or, ,

which is what we have as the expression in our step ‎(10). The
proof of the other cases for intra-row permutation is very
similar and the proof for inter-row permutation is trivial.

Steps (12) and (13) consist of calculating the final
interleaved address. According to the standard, the final
address is derived by counting matrix elements column-wise,
from top to bottom and from left to right. Also, the dummy bits
must be excluded from counting. This is called pruning in the
standard. Therefore, must be subtracted from the output
position. In a special case, the interleaved column index may
be the same as one of the dummy bits’ column index. In this
case, the interleaved address must be decremented by one if the
interleaved row is below the row of dummy bits. Note that all
of the dummy bits share the same row after interleaving.

IV. PROPOSED ARCHITECTURE FOR ON-THE-FLY

INTERLEAVED ADDRESS GENERATION UNIT

We propose a novel hardware architecture for our
interleaved address generation algorithm that is scalable for
highly parallel interleaving. Figure 5 shows a block diagram of
our proposed architecture. Two main processing units are
preprocessing and run-time units. The preprocessing unit is
responsible for the steps (1)--(8) in the proposed algorithm in
the previous section. Run-time unit performs steps (8)--(13).
Read only memories (ROMs) hold the parameters that are
independent of block size and hence can be computed and
fixed offline. The values that are stored in Random Access

Inputs: ,
Initialization:
 = 0; = 1;
 = 1; = 0;
Iterations:
 while
 quotient = ;
 remainder = ;
 = = remainder;
 = – (quotient);
 = – (quotient);
 = = ;
 = = ;
Outputs: ,

 if
 ; ;
 if

 ; ;
 if
 Exchange and ;
 if
 ;

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse

Memories (RAMs) are generated and stored by the
preprocessing unit and are used by the run-time unit.

The preprocessing unit is activated only when there is a
change in the input block size. Whenever is modified, the
preprocessing unit updates the parameters and overwrites the
RAMs and registers. The run-time unit, on the other hand, is
always active and uses the parameters generated by the
preprocessing unit to compute the interleaved address from an
input address. The following describes the main blocks of our
architecture.

A. Memories

p-v-ROM stores prime numbers (and their

corresponding primitive roots () (Prime numbers table from

UMTS standard ‎[1]). T-ROM consists of the inter-row

permutation patterns, from the standard ‎[1], while T-ROM-

inv stores patterns. r-ROM stores sequences for

different values. m-RAM stores the multiplicative modular

inverses of values, which are denoted by s-RAM-

inv stores array computed in preprocessing.

B. Preprocessing Unit

The preprocessing unit takes the block size (
 as defined in the standard [1]) as input and generates

(number of columns of the rectangular matrix), (number of

rows of rectangular matrix), (prime number from prime

numbers table from UMTS standard ‎[1]), and (corresponding

primitive root). The modular multiplicative inverse block,

shown in the preprocessing unit of Figure 5, performs the

iterative extended Euclidean algorithm (shown in Figure 4) to

find the inverses (. A detailed block diagram of this block

is given in Figure 6. Many sequences are similar for

different values of ; therefore, sequences can be

generated offline, permuted to generate sequences and

grouped and stored in a read-only memory [7]. Offline modulo

computation for sequences saves resources. Finally, the

preprocessing unit chooses the right sequence based on the

value of and generates as described in step (8) of our

proposed algorithm. The preprocessing unit is also responsible

for generating the inverse of base sequence and

storing them in s-RAM-inv. All of the parameters that are

generated by the preprocessing unit are stored in registers and

memories and are accessed by both the preprocessing unit and

the run-time address generating unit. The preprocessing is done

once, and the output values are fixed as long as the block size

remains the same. Upon a change in block size, the

preprocessing must be redone for the new block size.

C. Run-time Address Generation Unit

The run-time unit uses the values generated by the
preprocessing unit to compute the interleaved address from the
input address. This unit consists of an address translator unit
which takes the original input address and outputs the
corresponding row and column index as explained in step (9)
in the algorithm. Then the final address is computed after
reversed intra-row and inter-row permutations according to
steps (10) and (11). Memory access, addition, subtraction,

multiplication, and modulo operations are required at run-time.
Figure 7 describes the run-time unit.

D. Hardware Synthesis Results

We implemented the proposed architecture with Verilog
HDL and synthesized the design with a TSMC 65nm standard
cell library using Synopsys Design Compiler. Tables I, II, and
III summarize resource and memory usage of the proposed
hardware implementation of the UMTS/HSPA+ interleaved
address generation unit. In Table I, the total cell area and
equivalent gate count is reported for preprocessing and run-
time units separately.

Fig. 5. Proposed architecture for UMTS/HSPA+ interleaved address

generation (IAG), non-parallel version.

Fig. 6. Modular multiplicative inverse unit based on iterative extended

Euclidean algorithm.

Fig. 7. Interleaved address generation run-time unit

TABLE I. AREA ESTIMATION OF UMTS/HSPA+ INTERLEAVED ADDRESS

GENERATION UNIT (TECHNOLOGY: TSMC 65nm, FREQ=700MHZ, GATE (2-

INPUT NAND) EQUIVALENT = 1.3)

Module Preprocessing unit Run-time unit Total

Cell area () 3820 3429 7249

Gate count 2938 2638 5576

TABLE II. SIZE OF RANDOM-ACCESS MEMORIES

TABLE III. SIZE OF READ-ONLY MEMORIES

V. EXPANSION OF THE PROPOSED ARCHITECTURE FOR A

PARALLEL INTERLEAVER
A parallel version of the proposed architecture for

UMTS/HSPA+ interleaved address generation unit can be
achieved using only one preprocessing unit, multiple copies of
(some of) the memory blocks, and multiple copies of the run-
time unit. Figure 8 describes the proposed parallel architecture.
As shown before in Tables I, II and III, the preprocessing unit
and the read-only memories use the largest portion of the total
resources required for address generation. Therefore, sharing
the preprocessing unit and memories in the parallel architecture
saves a large amount of hardware resources. Furthermore, the
proposed parallel architecture can be efficiently extended to a
dual-mode parallel interleaved/de-interleaved address
generation unit where the same preprocessing unit and
memories can be used in both modes.

 We define the degree of parallelism () as the number of
interleaved addresses that are generated in one clock cycle.
Here, we assume the decoders are radix-4 XMAP (cross
maximum a posteriori probability) SISO decoders [15]. Such a
decoder, in each clock cycle reads four extrinsic Log
Likelihood Ratio (LLR) values from LLR memory and then
outputs four new LLR values, which should be written in LLR
memory to the interleaved addresses. Therefore the minimum
parallelism that we consider here is 4. For a degree of
parallelism equal to , a group of interleaver run-time
units must work in parallel to maximize the throughput.
However, as described before, the preprocessing unit and
ROMs need not be duplicated as they can be shared between
the run-time units. Table IV reports the area and memory size
for a parallel UMTS/HSPA+ interleaved address generation
unit with different degrees of parallelism (note that the
parallelism is not limited to 32). The reported synthesis results
are in TSMC 65nm technology, and the target frequency is set
to 700MHz. We have also estimated the throughput of the
parallel turbo decoder that uses our proposed interleaver design
and the contention-free buffer structure proposed in ‎[4]. In
throughput estimation, the block size is assumed to be the
maximum (5114), and the number of iterations of the turbo
decoder is 6 which is a reasonable assumption. Also, a latency
of 8 clock cycles is assumed for the turbo decoder to account
for possible memory conflict resolution processes. With the
above-mentioned assumptions, for = 32 the maximum
achievable throughput satisfies the throughput requirements of
672 Mbps in HSPA+ standard.

A. Comparisons and Discussions

Figure 9 compares the growth of the area of parallel
interleaved address generation hardware with that of SISO
decoders for different degrees of parallelism. An estimated area
for a radix-4 XMAP decoder is 0.081 in the 65nm

technology [16]. As is clear from the figure, the area of the
proposed interleaved address generator is much smaller than
that of SISO decoders; particularly, for higher degrees of
parallelism, the area difference is significant.

Fig. 8. Parallel high-throughput UMTS/HSPA+ interleaved address generation
unit.

TABLE IV. RESOURCE AND THROUGHPUT ESTIMATION FOR PARALLEL

UMTS/HSPA+ INTERLEAVED ADDRESS GENERATION UNIT (TECHNOLOGY:

TSMC 65nm, FREQ=700MHZ; BLOCK SIZE=5114; NUMBER OF TURBO

ITERATIONS=6; TURBO DECODER LATENCY = 8 CLOCK CYCLES.)

Fig. 9. Comparing area growth of IAG unit versus SISO decoders in our
parallel turbo decoder.

Moreover, the area of the parallel interleaved address
generation unit grows with a much slower pace than the area of
SISO decoders with respect to the degree of parallelism. This
result shows that our proposed parallel architecture for
UMTS/HSPA+ turbo decoder interleaver is efficiently scalable
to highly parallel turbo decoders with high throughputs.

Since our proposed algorithm [3] is the only design with
interleaved writing capability (computing interleaved address
from original address), no other design with the same
functionality exists that we can compare with. However, we
compare our design with the most recent implementations of
conventional, on-the-fly UMTS interleavers (Table V). Asghar
et. al. in ‎[6] and ‎[7] propose a hardware reuse technique to
reduce the cost of the parallel UMTS interleaver. To increase
the efficiency, the authors propose recursive computation of
the intra-row permutation sequence and also recursive
computation of indices of this sequence. In addition, they
propose doubling the word length of block memory to make

0

0.2

0.4

0.6

0.8

4 8 16 32

A
re

a
(m

m
2)

Degree of parallelism

Proposed IAG

SISO Decoders

Degree of

Parallelism (PL)

Area

()

Memory

(KBytes)

Estimated

Throughput (Mbps)

4 0.0175 1.89 116

8 0.0312 3.12 230

16 0.0586 5.59 455

32 0.1135 10.52 889

ROM T-ROM T-ROM-inv p-v-ROM r-ROM Total

Size (Bytes) 32 32 84 548 696

RAM s-RAM-inv m-RAM Total

Size (Bytes) 256 20 276

TABLE V. COMPARISON WITH RELATED WORK ON INTERLEAVED ADDRESS

GENERATION FOR UMTS/HSPA+ STANDARD. PL IS DEGREE OF PARALLELISM.

two simultaneous memory accesses possible. Benkeser et. al.
in ‎[8] also propose arithmetic transformations to
minimize the computational complexity of interleaving and to
optimize the ASIC design of their interleaver, but their design
does not support parallelism.

An FPGA implementation of UMTS interleaver is proposed in
‎[12]. Their introduced architecture handles address generation
and data streaming, but does not support parallel interleaving.
The proposed designs in ‎[5] and ‎[6] support parallelism but
none of the previous works support interleaved writing.
Therefore, if any of the previous methods are to be used for
interleaved writing, they must generate the whole interleaving
pattern and store it in memory in advance, which is inefficient.

For a fair area comparison, the normalized area for each
implementation is reported; normalization is done with respect
to technology node and parallelism. That is, for those
implementations which support parallel interleaved address
generation (i.e.) the area is divided by . For ‎[12], the
area is estimated using the reported gate count and the FPGA
technology node of 90nm. The normalized area for our
implementation is smaller than all of the other works. The
working frequency is also the best among all. Our proposed
design supports interleaved writing to memory and therefore
by enabling the interleaving scheduling introduced in ‎[3], it
offers higher degrees of parallelism and therefore significantly
higher throughputs compared to all of the previous works.

VI. CONCLUSIONS

We propose a new algorithm and architecture for an
interleaved address generator unit of UMTS/HSPA+ standard
turbo decoder. The proposed approach facilitates interleaved
writing to turbo decoder memory by generating interleaved
addresses from input original addresses on-the-fly and
efficiently. Interleaved writing is an essential step in the new
turbo decoding memory access scheduling that has been
proposed recently to mitigate memory contention in
UMTS/HSPA+ parallel interleaver and to improve turbo
decoding throughput. In order to generate an interleaved
address from an original address, we perform reversed intra-
row and inter-row permutations. A key contribution in our
method is the use of extended Euclidean algorithm to compute
modular multiplicative inverse. We also present a parallel
hardware architecture for the introduced interleaved address
generator that exploits resource reuse and is efficiently
applicable in practical highly parallel turbo decoders. Our
design generates 32 interleaved addresses in one cycle and
satisfies the data rate requirement of 672 Mbps in HSPA+ while

at the same time it offers better silicon area and working
frequency in comparison to other recent works.

ACKNOWLEDGMENT

This work was supported in part by Huawei and by the US

National Science Foundation under grants CNS-1265332,

EECS-1232274, EECS-0925942 and CNS-0923479.

REFERENCES

[1] 3rd Generation Partnership Project (3GPP),‎ “Technical‎ specification
Universal Mobile Telecommunications System (UMTS); multiplexing

and channel coding (FDD), Tech. Spec. 25.212 Release-11,”‎Sept. 2012.

[2] Nokia‎ Siemens‎ Networks,‎ “Long‎ term‎ HSPA‎ evolution.‎ Mobile‎
broadband‎evolution‎beyond‎3GPP‎release‎10,”‎2010.

[3] G. Wang, A. Vosoughi, H. Shen, J. R. Cavallaro, and Y. Guo, “Parallel

interleaver architecture with new scheduling scheme for high throughput
configurable turbo decoder,” International Symposium on Circuits and

Systems (ISCAS) 2013, in press.

[4] G. Wang, Y. Sun,‎ J.‎ R.‎ Cavallaro‎ and‎ Y.‎ Guo,‎ “High-throughput
contention-free concurrent interleaver architecture for multi-standard

turbo‎ decoder,”‎ IEEE‎ 22nd International Conference on Application
Specific Systems, Architectures and Processors (ASAP), pp. 113-121,

2011.

[5] T.‎ Ilnseher,‎M.‎May,‎and‎N.‎Wehn,‎“A‎multi-mode 3GPP-TE/HSDPA
turbo‎ decoder,”‎ in‎ IEEE‎ International‎ Conference‎ on‎ Communication‎

Systems (ICCS), pp. 336 –340, Nov. 2010.

[6] R.‎Asghar,‎Wu‎Di,‎J.‎Eilert,‎and‎D.‎Liu,‎“Memory‎conflict‎analysis‎and‎

interleaver design for parallel turbo decoding supporting HSPA
Evolution,”‎ 12th‎ Euromicro‎ Conference‎ on‎ Digital‎ System‎ Design,‎

Architectures, Methods and Tools (DSD), pp.699-706, Aug. 2009.

[7] R.‎Asghar‎and‎D.‎ Liu,‎ “Towards‎ radix-4, parallel interleaver design to
support high-throughput turbo decoding for re-configurability,”‎ IEEE‎

Sarnoff Symposium, pp.1-5, Apr. 2010.

[8] F.‎ Speziali‎ and‎ J.‎ Zory,‎ “Scalable‎ and‎ area‎ efficient‎ concurrent‎
interleaver for high throughput turbo-decoders,”‎ in‎ Proc.‎ Euromicro‎

Symposium on Digital System Design (DSD), 2004, pp. 334 – 341.

[9] C.‎ Benkeser,‎ A.‎ Burg,‎ T.‎ Cupaiuolo,‎ and‎ Q.‎ Huang,‎ “Design‎ and‎
optimization of an HSDPA turbo decoder ASIC,” IEEE Journal of

Solid-State Circuits, vol. 44, issue 1, pp. 98-100, Jan. 2009.

[10] M.-C. Shin and I.-C.‎ Park,‎ “Processor-based turbo interleaver for
multiple third-generation‎ wireless‎ standards,”‎ IEEE‎ Communications‎

Letters, vol. 7, no. 5, pp. 210 –212, May 2003.

[11] Z.‎ Wang‎ and‎ Q.‎ Li,‎ “Very‎ low-complexity hardware interleaver for
turbo‎decoding,”‎IEEE‎Transactions‎on‎Circuits and Systems II: Express

Briefs, vol. 54, no. 7, pp. 636 –640, July 2007.

[12] H. Borrayo-Sandoval, R. Parra-Michel, L. Gonzalez-Perez, F. Printzen,

and C. Feregrino-Uribe,‎ “Design‎and‎ implementation‎of‎a‎configurable‎
interleaver/deinterleaver for turbo codes‎ in‎ 3GPP‎ standard,”‎ in‎

International Conference on Reconfigurable Computing and FPGAs, pp.
320-325, Dec. 2009.

[13] A. Hassan, M. Shokair, A. A. Elazm, D. Truhachev, and C. Schlegel,

“Proposed deterministic interleavers for CCSDS turbo code standard,”‎
Journal of Theoretical and Applied Information Technology, vol. 16, no.

1, pp 29-33, Jan. 2010.

[14] J. Hoffstein, J. Pipher, and J.H. Silverman, An Introduction to
mathematical cryptography. Springer Publishing Company,

Incorporated, 2008

[15] A. Giulietti, B. Bougard, V. Derruder, S. Dupont, J. W. Weijers, and L.
V.‎ der‎ Perre,‎ “A‎ 80‎ Mb/s‎ low-power‎ scalable‎ turbo‎ codec‎ core,”‎

Proceedings of Custom Integrated Circuits Conference, pp. 389-392,
May 2002.

[16] Y. Sun, "Parallel VLSI architectures for multi-Gbps MIMO

communication systems," Ph.D. dissertation, Rice University, Dec.
2010.

Impl.
Intlv.

Writing
Tech. ()

Area

()

Norm.

Area

()

Freq.

(MHz)

‎[12] 1 No FPGA–90nm

(Cyclone II)

100K

gates

0.13 -

‎[11] 1 No 180 0.24 0.031 130

‎[8] 1 No 130 0.4 0.102 246

‎[6] 2 No 65 0.014 0.007 150

‎[5] 16 No 40 0.12 0.02 350

This

work

32 Yes 65 0.15 0.004 700

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7911
http://www.ece.rice.edu/~ys4937/distribute/Phd_Thesis_YangSun.pdf
http://www.ece.rice.edu/~ys4937/distribute/Phd_Thesis_YangSun.pdf

